Reakcja układu mięśniowego na wysiłki o maksymalnej intensywności
  • -23%

ebook Reakcja układu mięśniowego na wysiłki o maksymalnej intensywności Andrzej Mastalerz

Andrzej Mastalerz
Wydawca: AWF Warszawa
Rok wydania: 2008
Opis Spis treści Szczegóły Recenzje

Celem pracy jest określenie reakcji układu mięśniowego na trening wykonywany z maksymalną intensywnością. W niniejszym opracowaniu do wskaźników różnicujących obciążenie treningowe zaliczono czas trwania przerwy wypoczynkowej i mechaniczną strukturę ćwiczenia treningowego. Mechaniczną strukturę ruchu zróżnicowano poprzez wykorzystanie ćwiczeń, w których mięśnie wykonują pracę w układzie łańcucha biokinematycznego zamkniętego lub podczas izolowanego ruchu tylko w jednym stawie. Ponadto wyodrębniono ćwiczenia, w których mięśnie pracowały w cyklu rozciągnięcie-skurcz oraz takie, w których ruch w stawie był realizowany w oparciu o koncentryczny charakter pracy mięśni. Weryfikując wpływ powyższych czynników zastosowano jednostki treningowe o identycznej strukturze ruchu i czasie wypoczynku, a także warianty ze zmodyfikowanymi składowymi obciążeń: skrócony wypoczynek i różna ruchliwość układu ruchu. Wszystkie opisywane w tej pracy rodzaje treningów składały się z tej samej liczby powtórzeń oraz zindywidualizowanej intensywności wysiłku. Każda z osób biorących udział w badaniach wykonywała trening z obciążeniem, dla którego moc rozwijana podczas ćwiczenia była maksymalna.
Wyniki przedstawione w pracy zostały podporządkowane trzem głównym zagadnieniom, których celem było określenie:
1. Związku pomiędzy strukturą ruchu ćwiczenia treningowego i czasem przerwy pomiędzy seriami, a przyrostem siły i mocy w treningu o maksymalnej intensywności.
2. Aktywności kinazy kreatynowej w ocenie potencjalnego przeciążenia i uszkodzenia mięśni podczas treningu o maksymalnej intensywności.
3. Wpływu treningu realizowanego z obciążeniem pozwalającym na rozwijanie maksymalnej mocy na koordynacyjne mechanizmy regulacji skurczu mięśniowego.
Dodatkowo podjęto próbę określenia:
4. Kontralateralnych efektów treningu wykonywanego w maksymalnym zakresie intensywności.
5. Różnic w bioelektrycznej aktywności mięśni jedno- i dwu-stawowych.
W badaniach wzięło udział 136 studentów podzielonych na 11 grup. Przydział do poszczególnych grup został wykonany losowo po badaniach wstępnych. Każdy z eksperymentów trwał siedem tygodni. Przez cztery tygodnie badani uczestniczyli w treningach, które odbywały się pięć razy w tygodniu (od poniedziałku do piątku). W każdy poniedziałek, przed treningiem, wykonano pomiary kontrolne. Ocenie podlegały wartości: momentów sił mięśniowych kończyn dolnych w warunkach statyki, mocy i wysokości wyskoku CMJ, mocy prostowników stawu kolanowego w warunkach izokinetyki oraz aktywność kinazy kreatynowej w osoczu krwi. Powyższe pomiary przeprowadzono również trzykrotnie w 32, 36 i 42 dniu eksperymentu. Bioelektryczną aktywność mięśni (EMG) kończyn dolnych określano pięciokrotnie: na początku eksperymentu, w poniedziałek w każdym tygodniu treningów oraz trzy dni po zakończeniu ostatniego treningu.
Wyniki badań przedstawione w pracy dowodzą, że interpretacja wartości przyrostów wskaźników opartych o metody pomiaru sił zewnętrznych w warunkach dynamiki, zależała od zbieżności struktury ruchu ćwiczenia kontrolnego z ćwiczeniem treningowym. Istotne różnice wynikające z ruchliwości łańcucha biokinematycznego przejawiały się tylko w wartościach mocy rozwijanej podczas wyskoku CMJ. Wartości mocy maksymalnej rozwijanej w wyskoku CMJ uzyskane w grupach B, C, D (trening w tych grupach był oparty o ćwiczenia wykonywane w łańcuchu biokinematycznym zamkniętym) były znamiennie wyższe od wyników zanotowanych w grupach E, F (trening w tych grupach był oparty o ćwiczenia wykonywane w łańcuchu biokinematycznym otwartym). Różnice wartości mocy rozwijanej dla izolowanego ruchu w stawie kolanowym, w warunkach izokinetyki zależały natomiast od prędkości ruchu, z jaką ten staw był trenowany. W tym przypadku zaznacza się wpływ homogeniczności ze strukturą ćwiczenia treningowego. Różnice tempa adaptacji do obciążenia treningowego dały się wyodrębnić dopiero w oparciu o pomiary aktywności kinazy kreatynowej. Przyrosty tygodniowej aktywności CK w pierwszym okresie treningów były najwyższe w grupie wykonującej trening ograniczony do ruchu w jednym stawie (E).
W niniejszych badaniach wykazano, że na wyniki testów, którymi weryfikowano efekty treningów wpływały dwa elementy charakteryzujące strukturę ruchu: prędkość ruchu i czas pracy mięśni. Po treningu na równi pochyłej uzyskano znamienny przyrost mocy podczas prostowania stawu kolanowego w warunkach izokinetycznych właśnie ze względu na prędkość ruchu w tym stawie, która była najwyższa względem innych grup. Drugim ważnym czynnikiem, od którego zależały wartości mocy rozwijane w warunkach izokinetycznych był czas trwania koncentrycznej fazy ruchu ćwiczenia treningowego. Istotne różnice wynikające z ruchliwości układu ruchu wystąpiły przede wszystkim dla mocy maksymalnej rozwijanej podczas wyskoku CMJ. W obu grupach wykonujących trening ograniczony do ruchu w jednym stawie maksymalny przyrost mocy wyniósł 2,5%, podczas gdy w grupach o zbliżonej ruchliwości z ćwiczeniem kontrolnym przyrost ten wyniósł ponad 15%.
Skrócenie czasu trwania wypoczynku pomiędzy seriami wpłynęło na relatywnie mniejsze przyrosty podstawowych wskaźników biomechanicznych wykorzystywanych do oceny efektów treningowych. Jednak istotny statystycznie wpływ czasu wypoczynku zaobserwowano podczas analizy aktywności kinazy kreatynowej. Skrócenie czasu trwania przerwy pomiędzy seriami spowodowało wyższą aktywność kinazy kreatynowej (CK) w pierwszym tygodniu treningów. Zupełne wyeliminowanie wypoczynku pomiędzy seriami spowodowało istotną zmianę trendu aktywności CK prowadząc do wzrostu tygodniowych przyrostów aktywności CK. Obserwowany efekt mógł być skutkiem uszkodzenia mięśni, które potwierdza podwyższona aktywność CK. Ponieważ większą podatnością na uszkodzenie charakteryzują się włókna szybko kurczące się to trend dotyczący mocy widma sygnału EMG, który obserwowano w tej pracy, mógł być obrazem zwiększonego udziału włókien wolno kurczących się w kolejnych tygodniach treningu. O ile jednak grupom trenujących z dłuższym czasem przerwy obniżeniu mocy widma sygnału EMG towarzyszył wzrost rekrutacji jednostek motorycznych, to w grupach o skróconym czasie przerwy zanotowano spadek rekrutacji.
W treningu ograniczonym do pracy wykonywanej przez jedną kończynę mogą występować kontralateralne zmiany wartości momentów sił mięśniowych oraz mocy. Wyniki pomiarów momentów sił mięśniowych (Mm) świadczyły jedynie o zmianach wynikających ze stabilizującej funkcji mięśni zginaczy kończyny nietrenowanej. Na podstawie pomiarów wykonanych w warunkach dynamicznych wykazano, że charakterystyka mechaniczna obu obciążników różniła się na tyle istotnie, by wywołać przeciwstawne trendy zmian wartości mocy w kolejnych dniach badań dla kończyny nietrenowanej. Kontralateralne efekty treningu z oporem elastycznym mogą być skutkiem dłuższego czasu pracy mięśni w każdym ćwiczeniu właśnie w tym wariancie treningowym. Ponadto charakterystyka mechaniczna tego obciążnika powoduje wzrost wartości momentu siły obciążającego staw, wraz ze wzrostem kąta wyprostu w stawie kolanowym.
W oparciu o przedstawione w niniejszej pracy wyniki badań można porównać funkcje mięśni jedno- i dwu-stawowych. Podczas ćwiczeń wykonywanych z dużą mocą mięśnie dwu-stawowe pełnią rolę regulatorów dystrybuujących siłę przez stawy, nad którymi przebiegają, a mięśnie jedno-stawowe są generatorami tej siły, o czym świadczy liniowa zależność pomiędzy prędkością ruchu i bioelektryczną aktywnością dotycząca tylko mięśnia jedno-stawowego. Na przykładzie opisywanych w tej pracy badań wykazano, że kiedy porówna się bioelektryczną aktywność mięśnia obszernego bocznego i prostego uda to obserwujemy wyraźny wzrost udziału pierwszego mięśnia w ćwiczeniach, w których prędkość ruchu w stawie kolanowym była największa. Świadczy to o wzroście roli tego mięśnia jako generatora sił przy ograniczonej, ze względu na czas ruchu, aktywności mięśnia dwu-stawowego.

Spis treści ebooka Reakcja układu mięśniowego na wysiłki o maksymalnej intensywności

Stosowane oznaczenia
Streszczenie
1. Wstęp
1.1. Mechanizmy adaptacyjne do pracy mięśnia w cyklu rozciągnięcie – skurcz
1.2. Czynniki warunkujące poziom siły i mocy mięśnia
1.3. Wskaźniki obciążenia treningowego
2. Postawienie problemu
2.1. Cel pracy
2.2. Założenia
2.3. Hipotezy
3. Metody wykorzystane do pomiaru cech fizycznych i obciążenia treningowego
3.1. Metody pomiaru cech fizycznych
3. 1.1. Pomiar momentów sił mięśniowych kończyn dolnych w warunkach statycznych
3. 1.2. Pomiar momentów sił mięśniowych i mocy w warunkach skurczu izokinetycznego
3. 1.3. Pomiar mocy prostowników stawu kolanowego w funkcji typu i wielkości zewnętrznego momentu obciążającego
3. 1.4. Pomiar mocy podczas ćwiczeń na równi pochyłej
3. 1.5. Pomiar mocy podczas wyskoku CMJ
3.2. Metoda pomiaru bioelektrycznej aktywności mięśni
3.3. Metoda oznaczenia kinazy kreatynowej
3.4. Metody statystycznej analizy wyników badań
4. Ocena skuteczności treningu mocy z wykorzystaniem wysiłku ciągłego przerywanego o identycznej strukturze ruchu
4.1. Materiał badany
4.2. Charakterystyka zastosowanego obciążenia treningowego
4.3. Reakcja układu mięśniowego na trening mocy z wykorzystaniem wysiłku ciągłego i przerywanego
4.3.1. Przyrost cech fizycznych
4.3.2. Aktywność kinazy kreatynowej
4.3.3. Aktywność bioelektryczna wybranych mięśni
5. O cena skuteczności treningu mocy o różnej strukturze ruchu
5.1. Materiał badany
5.2. Charakterystyka zastosowanego obciążenia treningowego
5.3. W pływ zastosowanych treningów na reakcję układu mięśniowego
5.3.1. Przyrost cech fizycznych
5.3.2. Aktywność kinazy kreatynowej
5.3.3. Aktywność bioelektryczna wybranych mięśni
6. Wpływ czasu trwania przerwy wypoczynkowej na skuteczność treningu mocy o różnej strukturze ruchu
6.1. Materiał badany
6.2. Charakterystyka zastosowanego obciążenia treningowego
6.3. Reakcja układu mięśniowego na trening mocy o różnym czasie trwania przerwy wypoczynkowej i strukturze ruchu .
7. Kontralateralne efekty treningu mocy . .
7.1. Materiał badany
7.2. Charakterystyka zastosowanego obciążenia treningowego .
7.3. Zmiana siły i mocy mięśni stawu kolanowego.
8. Omówienie wyników . . . . . . .
8.1. Reakcja biomechaniczna na trening o maksymalnej intensywności . . .
8. 1.1. Związek pomiędzy strukturą ruchu ćwiczenia treningowego, a przyrostem siły i mocy w treningu o maksymalnej intensywności . .
8. 1.2. Związek pomiędzy czasem trwania przerwy między seriami, a przyrostem siły i mocy w treningu o maksymalnej intensywności .
8.2. Z miana aktywności kinazy kreatynowej pod wpływem treningu o maksymalnej intensywności . .
8.3. Koordynacyjne mechanizmy regulacji skurczu mięśniowego w treningu mocy o maksymalnej intensywności
8.4. Kontralateralne efekty treningu mocy . . . .
8.5. Uwagi końcowe . . . . .
9. Podsumowanie. .
10. Piśmiennictwo . . .
11. Aneks . . . . . .
Wykaz projektów badawczych i publikacji, związanych z badaniami opisanymi w pracy . . . . . . .
Contents . . . . . .
List of symbols . . .
Summary .
List of figures .
List of tables.

Szczegóły ebooka Reakcja układu mięśniowego na wysiłki o maksymalnej intensywności

Wydawca:
AWF Warszawa
Rok wydania:
2008
Typ publikacji:
Ebook
Język:
polski
Format:
pdf
ISBN:
978-83-89630-64-3
ISBN wersji papierowej:
978-83-89630-64-3
Wydanie:
1
Autorzy:
Andrzej Mastalerz
Miejsce wydania:
WARSZAWA
Liczba Stron:
169

Recenzje ebooka Reakcja układu mięśniowego na wysiłki o maksymalnej intensywności

Średnia ocena

0.0
0 recenzji

  • Reviews (0)

@CUSTOMER_NAME@

@COMMENT_TITLE@

@COMMENT_COMMENT@

@COMMENT_AVATAR@

@CUSTOMER_NAME@

@AUTHOR_PROFILE@ @COMMENT_ISO_COUNTRY@ @VERIFY_PURCHASE@
@COMMENT_DATE@
@COMMENT_NO_APPROVE@

@COMMENT_COMMENT@

Reply
@COMMENT_AVATAR@

@CUSTOMER_NAME@

@AUTHOR_PROFILE@ @COMMENT_ISO_COUNTRY@ @VERIFY_PURCHASE@
@COMMENT_DATE@
@COMMENT_NO_APPROVE@

@COMMENT_COMMENT@

Reply

Na jakich urządzeniach mogę czytać ebooki?

Ikona ebooka Na czytnikach Kindle, PocketBook, Kobo i innych
Ikona komutera Na komputerach stacjonarnych i laptopach
Ikona telefonu Na telefonach z systemem ANDROID lub iOS
Ikona urządzenia elektroniczne Na wszystkich urządzeniach obsługujących format plików PDF, Mobi, EPub
  • -23%
-23% 20,00 zł
15,41 zł
Najniższa cena z 30 dni: 15,41 zł