ebook Matematyczne modele uczenia maszynowego w językach MATLAB i PYTHON
Stanisław Osowski, Robert Szmurło
Wydawca:
Oficyna Wydawnicza Politechniki Warszawskiej
Rok wydania:
2024
Prezentowane opracowanie dotyczy różnych modeli i metod stosowanych w uczeniu maszynowym. W szczególności, w poszczególnych rozdziałach przedstawione są takie zagadnienia, jak: regresja liniowa, klasyfikatory KNN, klasyfikatory Bayesa, modele matematyczne drzew decyzyjnych, sieci neuronowe MLP, sieci RBF, sieci SVM do klasyfikacji i regresji, sieci głębokie (CNN, autoenkoder, LSTM, transformer), zagadnienia zdolności generalizacyjnych modeli, w tym zespoły klasyfikatorów i systemów regresyjnych, transformacje i metody redukcji wymiaru danych wielowymiarowych, metody grupowania danych wielowymiarowych, wybrane metody generacji i selekcji cech diagnostycznych, metody oceny jakości rozwiązań, podstawowe rozwiązania adaptacyjnych systemów rozmytych.
W przedstawieniu poszczególnych rozwiązań modelowych zaprezentowano zarówno strukturę pod-stawowych modeli, jak i algorytmy uczące dostosowane do konkretnego modelu.
Ponieważ z punktu widzenia aktualnego stanu wiedzy do najważniejszych rozwiązań sztucznej inteligencji należą sztuczne sieci neuronowe. Tym zagadnieniom poświęcono najwięcej uwagi, wprowadzając różne rozwiązania sieciowe, w tym perceptron wielowarstwowy (MLP), sieć o radialnej funkcji bazowej (RBF), maszynę wektorów nośnych (SVM) czy różne rozwiązania głębokich sieci neuronowych wielowarstwowych, takich jak sieć konwolucyjna (CNN), autoenkoder (AE) czy sieć LSTM.
Teoretyczne podstawy algorytmów uczących zostały zilustrowane przykładowymi programami implementującymi je przy użyciu oprogramowania Matlab i Python. Prezentowane w podręczniku skrypty z przykładami w Matlabie i Pythonie zostały udostępnione na platformie Github pod adresem: https://github.com/szmurlor/mmum.
Podręcznik jest przeznaczony dla słuchaczy wyższych lat studiów, doktorantów i ludzi zainteresowanych metodami uczenia maszynowego, podstawowego narzędzia sztucznej inteligencji. Ze względu na interdyscyplinarny charakter tematyki może być wykorzystany zarówno w informatyce, inżynierii biomedycznej, jak i innych naukach technicznych. Wprowadzenie zarówno podstawowych jak i zaawansowanych pojęć uczenia maszynowego powoduje, że może być użyteczny dla osób początkujących i zaawansowanych w tej tematyce.
W przedstawieniu poszczególnych rozwiązań modelowych zaprezentowano zarówno strukturę pod-stawowych modeli, jak i algorytmy uczące dostosowane do konkretnego modelu.
Ponieważ z punktu widzenia aktualnego stanu wiedzy do najważniejszych rozwiązań sztucznej inteligencji należą sztuczne sieci neuronowe. Tym zagadnieniom poświęcono najwięcej uwagi, wprowadzając różne rozwiązania sieciowe, w tym perceptron wielowarstwowy (MLP), sieć o radialnej funkcji bazowej (RBF), maszynę wektorów nośnych (SVM) czy różne rozwiązania głębokich sieci neuronowych wielowarstwowych, takich jak sieć konwolucyjna (CNN), autoenkoder (AE) czy sieć LSTM.
Teoretyczne podstawy algorytmów uczących zostały zilustrowane przykładowymi programami implementującymi je przy użyciu oprogramowania Matlab i Python. Prezentowane w podręczniku skrypty z przykładami w Matlabie i Pythonie zostały udostępnione na platformie Github pod adresem: https://github.com/szmurlor/mmum.
Podręcznik jest przeznaczony dla słuchaczy wyższych lat studiów, doktorantów i ludzi zainteresowanych metodami uczenia maszynowego, podstawowego narzędzia sztucznej inteligencji. Ze względu na interdyscyplinarny charakter tematyki może być wykorzystany zarówno w informatyce, inżynierii biomedycznej, jak i innych naukach technicznych. Wprowadzenie zarówno podstawowych jak i zaawansowanych pojęć uczenia maszynowego powoduje, że może być użyteczny dla osób początkujących i zaawansowanych w tej tematyce.
Szczegóły ebooka Matematyczne modele uczenia maszynowego w językach MATLAB i PYTHON
- Wydawca:
- Oficyna Wydawnicza Politechniki Warszawskiej
- Rok wydania:
- 2024
- Typ publikacji:
- Ebook
- Język:
- polski
- Format:
- ISBN:
- 978-83-8156-598-1
- ISBN wersji papierowej:
- 978-83-8156-597-4
- Wydanie:
- 1
- Autorzy:
- Stanisław Osowski,Robert Szmurło
- Liczba Stron:
- 378
Recenzje ebooka Matematyczne modele uczenia maszynowego w językach MATLAB i PYTHON
-
Reviews (0)
Na jakich urządzeniach mogę czytać ebooki?
Na czytnikach Kindle, PocketBook, Kobo i innych
Na komputerach stacjonarnych i laptopach
Na telefonach z systemem ANDROID lub iOS
Na wszystkich urządzeniach obsługujących format plików PDF, Mobi, EPub
47,00 zł
@CUSTOMER_NAME@
@COMMENT_TITLE@
@COMMENT_COMMENT@