ebook Teoria węzłów i związanych z nimi struktur dystrybutywnych
Józef H. Przytycki
Wydawca:
Wydawnictwo Uniwersytetu Gdańskiego
Rok wydania:
2018
Jest to drugie wydanie książki z 2012 roku, rozszerzone o dwanaście nowych wykładów, wygłoszonych przez autora w Instytucie Matematyki Uniwersytetu Gdańskiego w latach 2012–2015. Wykłady poprzedza krótki rys historyczny teorii węzłów.
Pierwsze cztery wykłady dotyczą klasycznej teorii węzłów, są omówione węzły kratowe, ruchy Reidemeistera, relacje Taita pomiędzy grafami i splotami, kolorowanie Foxa i kolorowanie kwandlami, wielomian Jonesa i nawias Kauffmana węzłów, wielomian HOMFLYPT i wielomian Kauffmana dwóch zmiennych. Wykłady V–XIII dotyczą w szczególności homologii struktur dystrybutywnych, mających swe korzenie w idei wraka oraz kwandla. Są one szybko się rozwijającym narzędziem w teorii topologii położenia, w tym w klasycznej i wyżej wymiarowej teorii węzłów. Ostatnie osiągnięcia w teorii homologii kwandli i innych struktur rozdzielnych są ważnym składnikiem nowoczesnej teorii węzłów.
Nowe wykłady, XIV–XXV, są ściśle związane z poprzednimi, rozszerzają je, ale nie powtarzają. Szczególnie warto zwrócić uwagę na wykład XXII, jako że dotyczy on nowych, choć elementarnych, wyników, które autor otrzymał w marcu 2014: konstrukcji q-wielomianu drzewa z korzeniem, ściśle związanego z nawiasem Kauffmana dla splotów.
W dodatkach omówiono homologię krat rozdzielnych oraz zagadnienia związane z wieloczłonowymi homologiami struktur rozdzielnych (np. algebr Boole'a).
Pierwsze cztery wykłady dotyczą klasycznej teorii węzłów, są omówione węzły kratowe, ruchy Reidemeistera, relacje Taita pomiędzy grafami i splotami, kolorowanie Foxa i kolorowanie kwandlami, wielomian Jonesa i nawias Kauffmana węzłów, wielomian HOMFLYPT i wielomian Kauffmana dwóch zmiennych. Wykłady V–XIII dotyczą w szczególności homologii struktur dystrybutywnych, mających swe korzenie w idei wraka oraz kwandla. Są one szybko się rozwijającym narzędziem w teorii topologii położenia, w tym w klasycznej i wyżej wymiarowej teorii węzłów. Ostatnie osiągnięcia w teorii homologii kwandli i innych struktur rozdzielnych są ważnym składnikiem nowoczesnej teorii węzłów.
Nowe wykłady, XIV–XXV, są ściśle związane z poprzednimi, rozszerzają je, ale nie powtarzają. Szczególnie warto zwrócić uwagę na wykład XXII, jako że dotyczy on nowych, choć elementarnych, wyników, które autor otrzymał w marcu 2014: konstrukcji q-wielomianu drzewa z korzeniem, ściśle związanego z nawiasem Kauffmana dla splotów.
W dodatkach omówiono homologię krat rozdzielnych oraz zagadnienia związane z wieloczłonowymi homologiami struktur rozdzielnych (np. algebr Boole'a).
Szczegóły ebooka Teoria węzłów i związanych z nimi struktur dystrybutywnych
- Wydawca:
- Wydawnictwo Uniwersytetu Gdańskiego
- Rok wydania:
- 2018
- Typ publikacji:
- Ebook
- Język:
- polski
- Format:
- ISBN:
- 978-83-7865-728-6
- ISBN wersji papierowej:
- 978-83-7326-907-1
- Wydanie:
- 2
- Autorzy:
- Józef H. Przytycki
- Miejsce wydania:
- Gdańsk
- Liczba Stron:
- 188
Recenzje ebooka Teoria węzłów i związanych z nimi struktur dystrybutywnych
-
Reviews (0)
Na jakich urządzeniach mogę czytać ebooki?
Na czytnikach Kindle, PocketBook, Kobo i innych
Na komputerach stacjonarnych i laptopach
Na telefonach z systemem ANDROID lub iOS
Na wszystkich urządzeniach obsługujących format plików PDF, Mobi, EPub
27,30 zł
@CUSTOMER_NAME@
@COMMENT_TITLE@
@COMMENT_COMMENT@