Analiza, cz. 3
  • -5%

ebook Analiza, cz. 3 Krzysztof Maurin

Krzysztof Maurin
Wydawca: Wydawnictwo Naukowe PWN
Rok wydania: 2010
Opis Spis treści Szczegóły Recenzje

Każde słowo – podobnie jak imię – niesie w sobie różną treść, budzi różne skojarzenia zależne od doświadczeń tego, kogo spotyka. I tak, słowo analiza znaczy dla każdego matematyka coś innego. Dla jednych obejmuje ono niewiele więcej niż rachunek różniczkowy i całkowy, dla innych kojarzy się z twierdzeniem Riemanna–Rocha czy formami harmonicznymi. Jest to jedyny podręcznik, który wychodząc od zera – dokładniej mówiąc od liczb wymiernych – dochodzi do teorii dystrybucji, całek prostych, analizy na rozmaitościach zespolonych, przestrzeni Kählera, teorii snopów i wiązek wektorowych itd. Celem moim było pokazanie młodemu człowiekowi piękna i bogactwa tego niezwykłego świata, jakim jest współczesna analiza matematyczna.


(z Przedmowy)



Książka jest wznowieniem pierwszego wydania trzeciej części trylogii prof. Krzysztofa Maurina Analiza, które ukazało się nakładem PWN w 1991 roku jako tom 71 Biblioteki Matematycznej.


W części III autor, zakładając, że czytelnik zna elementy topologii ogólnej i całkowania form różniczkowych, wnika najpierw głębiej w analizę zespoloną, a następnie idzie drogą Riemanna, dla którego teoria potencjału, na powierzchniach związanych nierozerwalnie z jego nazwiskiem, była głównym narzędziem.

Plik PDF ma postać skanów co uniemożliwia przeszukiwanie tekstu.

Spis treści ebooka Analiza, cz. 3

Rozdział XV. Podstawowe własności funkcji holomorficznych wielu zminnych. Funkcje harmoniczne 9
§ 1. Odwzorowania holomorficzne. Równania Cauchy'ego-Riemanna 9
§ 2. Formy różniczkowena rozmaitości zespolonej. Formy typu (p, q). Operatory d' i d" 15
§ 3. Wzór Cauchy'ego i jego zastosowania 21
§ 4. Topologia przestrzeni funkcji holomorficznych A (?) 28
§ 5. Podstawowe własności funkcji harmonicznych 32
§ 6. Funkcje Greena. Wzór całkowy Poissona. Twierdzenie Harnacka 42
§ 7. Funkcje podharmoniczne. Rozwiązanie Perrona problemu Dirichleta 47

Rozdział XVI. Jednowymiarowa analiza zespolona (powierzchnie Riemanna) 53
§ 1. Zera funkcji holomorficznych jednej zmiennej zespolonej 55
§ 2. Funkcje holomorficzne w pierścieniu. Rozwinięcie w szewreg Laurenta. Punkty osobliwe 62
§ 3. Funkcje meromorficzne 72
§ 4. Zastosowanie residuów do obliczania całek 77
§ 5. Zastosowanie zasady argumentu 85
§ 6. Funkcje i normy różniczkowe na powierzchni Riemanna 89
§ 7. Przedłużenie analityczne. Nakrycia. Grupa podstawowa. Teoria Poincarégo 101
§ 8. Twierdzenie Koebego-Riemanna. Geometria nieeuklidesowa. Przekształcenia Möbiusa 131
§ 9. Metoda Perrona dla powierzchni Riemanna. Twierdzenie Radó 153
§ 10. Funkcje rezolutywne. Miary harmoniczne. Twierdzenie Brelota 164
§ 11. Funkcja Greena powierzchni Riemanna 171
§ 12. Twierdzenie o uniformizacji 176
§ 13. Twierdzenie Rungego. Twierdzenie Behnkego i Steina. Twierdzenie Malgrange'a 180
§ 14. Problemy Cousina w otwartych powierzchniach Riemanna. Twierdzenie Mittag-Lefflera i Weierstrassa 185
§ 15. Przykłady ułamków prostych i rozkładu na ułamki proste. Funkcje cospz, ?2/sin2pz, ? (z). Wzory Mellina i Hankla. Iloczyny kanoniczne 192
§ 16. Funkcje eliptyczne. Szeregi Eisensteina. Funkcja A 197
§ 17. Funkcje i formy modułowe. Figura modułowa, nieciągłe grupy automorfizmów 207
§ 18. Wzór na krotność zer formy modułowej. Wymiar przestrzeni wektorowych M0 (k, ?) form parabolicznych 223
§ 19. Własności odwzorowania j. Twierdzenie Picarda. Krzywe eliptyczne. Problem odwrotny Jacobiego. Twierdzenie Abela 226
§ 20. Zasada uninformalizacji. Formy automorficzne. Twierdzenie Riemanna-Rocha i jego konsekwencje. szkic historyczny 235
§ 21. Dodatki. Ćwiczenia (dowody twierdzeń Rungego, Florack, Koebego i Hurwitza, grupy trójkątne, całki eliptycznei liczby przestępne) 263
§ 22. Problem Riemanna-Hilberta 281

Rozdział XVII. Przestrzenie normalne Tichonowa i parazwarte. Teoria Gelfanda. Rozkład jedności 283
§ 1. Przestrzenie lokalne zwarte przeliczalne w nieskończoności 283
§ 2. Przestrzenie normalne. Lemat Urysohna 285
§ 3. Rozszerzenie funkcji ciągłych na przestrzeniach normalnych 289
§ 4. Przestrzenie Tichonowa. Uniformizowanie. Uzwarcenie 291
§ 5. Teoria ideałów maksymalnych 295
§ 6. Teoria ideałów maksymalnych (według) Gelfanda 300
§ 7. Związek z mechaniką kwantową 304
§ 8. Rodziny lokalnie skończone 305
§ 9. Przestrzenie parazwarte. Rozkład jedności. Parazwartość przestrzeni metrycznych 307

Rozdział XVIII. Odwzorowania mierzalne. Transport miary. Sploty miar i funkcji 313
§ 1. Odwzorowania mierzalne 314
§ 2. Topologie wyznaczone przez rodziny odwzorowań 315
§ 3. Transport miary 317
§ 4. granice rzutowe przestrzeni Hausdorffa. Nieskończone iloczyny tensorowe i granice rzutowe miar 318
§ 5. Sploty miar i funkcji 322
§ 6. Sploty funkcji i miar na Rp 325
§ 7. Sploty funkcji całkowalnych 325

Rozdział XIX. Teoria dystrybucji. Analiza harmoniczna 327
§ 1. Przestrzeń C0? (?) 327
§ 2. Różniczkowalny rozkład jedności na Rn 331
§ 3. Przestrzeń funkcji próbnych. Dystrybucje 332
§ 4. Granice induktywne. Topologia przestrzeni ? 335
§ 5. Zasada sklejania dystrybucji. Nośnik dystrybucji 337
§ 6. Przestrzeń e (?). Dystrybucje o nośnikach zwartych 338
§ 7. działania na dystrybucjach 340
§ 8. Algebra splotowa e' (Rn) 347
§ 9. Obraz prosty dystrybucji 348
§ 10. Uwagi o iloczynach tensorowych EÄF EÄF. Twierdzenie o jądrze 349
§ 11. Iloczyn tensorowy E F przestrzeni Hilberta 351
§ 12. Regularyzacja dystrybucji 354
§ 13. Przykłady dystrybucji ważnych w zastosowaniach 356
§ 14. Transformacja Fouriera. Przestrzeń Y 360
§ 15. Transformacja Fouriera jako operator unitarny na przestrzeni Y2 (Rn) 366
§ 16. Dystrybucje temperowane. Transformacja Fouriera w Y' 367
§ 17. Transformacja Laplace'a-Fouriera dla funkcji i dystrybucji. Twierdzenie Paleya-Wienera-Schwartza 372
§ 18. Rozwiązania podstawowe operatorów różniczkowych 375
§ 19. Funkcje dodatnio określone. Dystrybucje dodatnie. Twierdzenie Bochnera i Minłosa 377
§ 20. Reprezentacje grup lokalnie zwartych. Związek między reprezentacjami unitarnymi i funkcjami dodatnio określnonymi 381
§ 21. Całka Haara 389

Dodatek. Twierdzenie Sarda. Lemat Thoma. Twierdzenie Whitneya 396
Skorowidz oznaczeń 402
Skorowidz nazwisk 407
Skorowidz nazw 410

Szczegóły ebooka Analiza, cz. 3

Wydawca:
Wydawnictwo Naukowe PWN
Rok wydania:
2010
Typ publikacji:
Ebook
Język:
polski
Format:
pdf
ISBN:
978-83-01-16231-3
ISBN wersji papierowej:
978-83-01-16231-3
Wydanie:
2
Autorzy:
Krzysztof Maurin
Miejsce wydania:
Warszawa
Liczba Stron:
424

Recenzje ebooka Analiza, cz. 3

Średnia ocena

0.0
0 recenzji

  • Reviews (0)

@CUSTOMER_NAME@

@COMMENT_TITLE@

@COMMENT_COMMENT@

@COMMENT_AVATAR@

@CUSTOMER_NAME@

@AUTHOR_PROFILE@ @COMMENT_ISO_COUNTRY@ @VERIFY_PURCHASE@
@COMMENT_DATE@
@COMMENT_NO_APPROVE@

@COMMENT_COMMENT@

Reply
@COMMENT_AVATAR@

@CUSTOMER_NAME@

@AUTHOR_PROFILE@ @COMMENT_ISO_COUNTRY@ @VERIFY_PURCHASE@
@COMMENT_DATE@
@COMMENT_NO_APPROVE@

@COMMENT_COMMENT@

Reply

Na jakich urządzeniach mogę czytać ebooki?

Ikona ebooka Na czytnikach Kindle, PocketBook, Kobo i innych
Ikona komutera Na komputerach stacjonarnych i laptopach
Ikona telefonu Na telefonach z systemem ANDROID lub iOS
Ikona urządzenia elektroniczne Na wszystkich urządzeniach obsługujących format plików PDF, Mobi, EPub
  • -5%
-5% 84,00 zł
79,90 zł
Najniższa cena z 30 dni: 79,90 zł