Analiza, cz. 3
  • -11%

ebook Analiza, cz. 3 Analiza zespolona, dystrybucje, analiza harmoniczna Krzysztof Maurin

Krzysztof Maurin
Opis Spis treści Szczegóły Recenzje

Odkryj bogactwo współczesnej analizy matematycznej dzięki tej fascynującej książce "Analiza, cz. 3" autorstwa prof. Krzysztofa Maurina wydanej przez Wydawnictwo Naukowe PWN w 2010 roku. Jest to trzecia część trylogii, która skutecznie wprowadza czytelnika w niezwykły świat analizy zespolonej i teorii potencjału.

Ta unikalna publikacja cyfrowa jest dostępna do pobrania jako ebook w formacie PDF, co pozwala na wygodne czytanie na różnych urządzeniach elektronicznych. Znajdziesz w niej treści, które zainspirują i poszerzą Twoją wiedzę matematyczną.

Kup e-booka "Analiza, cz. 3" i doświadcz niezwykłego bogactwa współczesnej analizy matematycznej. Dzięki tej książce elektronicznej zanurzysz się w świecie rachunku różniczkowego, całkowego, twierdzenia Riemanna-Rocha oraz innych zaawansowanych dziedzin matematyki.

Wydanie to jest wznowieniem pierwszego wydania z 1991 roku i stanowi nieocenione źródło wiedzy dla studentów i pasjonatów matematyki. Dostępne w sklepie z ebookami, które oferują najlepsze tytuły w formacie elektronicznym, ta publikacja cyfrowa jest idealnym wyborem dla każdego, kto pragnie pogłębić swoją znajomość matematyki.

Czytaj ebooki "Analiza, cz. 3" i rozwijaj swój umysł poprzez fascynującą podróż po świecie analizy matematycznej. Niech każde słowo w tej książce elektronicznej otworzy przed Tobą nowe horyzonty i pomoże zrozumieć piękno oraz bogactwo współczesnej matematyki.

Spis treści ebooka Analiza, cz. 3

Rozdział XV. Podstawowe własności funkcji holomorficznych wielu zminnych. Funkcje harmoniczne 9
§ 1. Odwzorowania holomorficzne. Równania Cauchy\'ego-Riemanna 9
§ 2. Formy różniczkowena rozmaitości zespolonej. Formy typu (p, q). Operatory d\' i d\" 15
§ 3. Wzór Cauchy\'ego i jego zastosowania 21
§ 4. Topologia przestrzeni funkcji holomorficznych A (?) 28
§ 5. Podstawowe własności funkcji harmonicznych 32
§ 6. Funkcje Greena. Wzór całkowy Poissona. Twierdzenie Harnacka 42
§ 7. Funkcje podharmoniczne. Rozwiązanie Perrona problemu Dirichleta 47

Rozdział XVI. Jednowymiarowa analiza zespolona (powierzchnie Riemanna) 53
§ 1. Zera funkcji holomorficznych jednej zmiennej zespolonej 55
§ 2. Funkcje holomorficzne w pierścieniu. Rozwinięcie w szewreg Laurenta. Punkty osobliwe 62
§ 3. Funkcje meromorficzne 72
§ 4. Zastosowanie residuów do obliczania całek 77
§ 5. Zastosowanie zasady argumentu 85
§ 6. Funkcje i normy różniczkowe na powierzchni Riemanna 89
§ 7. Przedłużenie analityczne. Nakrycia. Grupa podstawowa. Teoria Poincarégo 101
§ 8. Twierdzenie Koebego-Riemanna. Geometria nieeuklidesowa. Przekształcenia Möbiusa 131
§ 9. Metoda Perrona dla powierzchni Riemanna. Twierdzenie Radó 153
§ 10. Funkcje rezolutywne. Miary harmoniczne. Twierdzenie Brelota 164
§ 11. Funkcja Greena powierzchni Riemanna 171
§ 12. Twierdzenie o uniformizacji 176
§ 13. Twierdzenie Rungego. Twierdzenie Behnkego i Steina. Twierdzenie Malgrange\'a 180
§ 14. Problemy Cousina w otwartych powierzchniach Riemanna. Twierdzenie Mittag-Lefflera i Weierstrassa 185
§ 15. Przykłady ułamków prostych i rozkładu na ułamki proste. Funkcje cospz, ?2/sin2pz, ? (z). Wzory Mellina i Hankla. Iloczyny kanoniczne 192
§ 16. Funkcje eliptyczne. Szeregi Eisensteina. Funkcja A 197
§ 17. Funkcje i formy modułowe. Figura modułowa, nieciągłe grupy automorfizmów 207
§ 18. Wzór na krotność zer formy modułowej. Wymiar przestrzeni wektorowych M0 (k, ?) form parabolicznych 223
§ 19. Własności odwzorowania j. Twierdzenie Picarda. Krzywe eliptyczne. Problem odwrotny Jacobiego. Twierdzenie Abela 226
§ 20. Zasada uninformalizacji. Formy automorficzne. Twierdzenie Riemanna-Rocha i jego konsekwencje. szkic historyczny 235
§ 21. Dodatki. Ćwiczenia (dowody twierdzeń Rungego, Florack, Koebego i Hurwitza, grupy trójkątne, całki eliptycznei liczby przestępne) 263
§ 22. Problem Riemanna-Hilberta 281

Rozdział XVII. Przestrzenie normalne Tichonowa i parazwarte. Teoria Gelfanda. Rozkład jedności 283
§ 1. Przestrzenie lokalne zwarte przeliczalne w nieskończoności 283
§ 2. Przestrzenie normalne. Lemat Urysohna 285
§ 3. Rozszerzenie funkcji ciągłych na przestrzeniach normalnych 289
§ 4. Przestrzenie Tichonowa. Uniformizowanie. Uzwarcenie 291
§ 5. Teoria ideałów maksymalnych 295
§ 6. Teoria ideałów maksymalnych (według) Gelfanda 300
§ 7. Związek z mechaniką kwantową 304
§ 8. Rodziny lokalnie skończone 305
§ 9. Przestrzenie parazwarte. Rozkład jedności. Parazwartość przestrzeni metrycznych 307

Rozdział XVIII. Odwzorowania mierzalne. Transport miary. Sploty miar i funkcji 313
§ 1. Odwzorowania mierzalne 314
§ 2. Topologie wyznaczone przez rodziny odwzorowań 315
§ 3. Transport miary 317
§ 4. granice rzutowe przestrzeni Hausdorffa. Nieskończone iloczyny tensorowe i granice rzutowe miar 318
§ 5. Sploty miar i funkcji 322
§ 6. Sploty funkcji i miar na Rp 325
§ 7. Sploty funkcji całkowalnych 325

Rozdział XIX. Teoria dystrybucji. Analiza harmoniczna 327
§ 1. Przestrzeń C0? (?) 327
§ 2. Różniczkowalny rozkład jedności na Rn 331
§ 3. Przestrzeń funkcji próbnych. Dystrybucje 332
§ 4. Granice induktywne. Topologia przestrzeni ? 335
§ 5. Zasada sklejania dystrybucji. Nośnik dystrybucji 337
§ 6. Przestrzeń e (?). Dystrybucje o nośnikach zwartych 338
§ 7. działania na dystrybucjach 340
§ 8. Algebra splotowa e\' (Rn) 347
§ 9. Obraz prosty dystrybucji 348
§ 10. Uwagi o iloczynach tensorowych EÄF EÄF. Twierdzenie o jądrze 349
§ 11. Iloczyn tensorowy E F przestrzeni Hilberta 351
§ 12. Regularyzacja dystrybucji 354
§ 13. Przykłady dystrybucji ważnych w zastosowaniach 356
§ 14. Transformacja Fouriera. Przestrzeń Y 360
§ 15. Transformacja Fouriera jako operator unitarny na przestrzeni Y2 (Rn) 366
§ 16. Dystrybucje temperowane. Transformacja Fouriera w Y\' 367
§ 17. Transformacja Laplace\'a-Fouriera dla funkcji i dystrybucji. Twierdzenie Paleya-Wienera-Schwartza 372
§ 18. Rozwiązania podstawowe operatorów różniczkowych 375
§ 19. Funkcje dodatnio określone. Dystrybucje dodatnie. Twierdzenie Bochnera i Minłosa 377
§ 20. Reprezentacje grup lokalnie zwartych. Związek między reprezentacjami unitarnymi i funkcjami dodatnio określnonymi 381
§ 21. Całka Haara 389

Dodatek. Twierdzenie Sarda. Lemat Thoma. Twierdzenie Whitneya 396
Skorowidz oznaczeń 402
Skorowidz nazwisk 407
Skorowidz nazw 410

Szczegóły ebooka Analiza, cz. 3

Wydawca:
Wydawnictwo Naukowe PWN
Rok wydania:
2010
Typ publikacji:
Ebook
Język:
polski
Format:
pdf
Liczba stron:
424
Miejsce wydania:
Warszawa
ISBN dla wersji papierowej:
9788301162313

Recenzje ebooka Analiza, cz. 3

Średnia ocena

0.0
0 recenzji

  • Reviews (0)

@CUSTOMER_NAME@

@COMMENT_TITLE@

@COMMENT_COMMENT@

@COMMENT_AVATAR@

@CUSTOMER_NAME@

@AUTHOR_PROFILE@ @COMMENT_ISO_COUNTRY@ @VERIFY_PURCHASE@
@COMMENT_DATE@
@COMMENT_NO_APPROVE@

@COMMENT_COMMENT@

Reply
@COMMENT_AVATAR@

@CUSTOMER_NAME@

@AUTHOR_PROFILE@ @COMMENT_ISO_COUNTRY@ @VERIFY_PURCHASE@
@COMMENT_DATE@
@COMMENT_NO_APPROVE@

@COMMENT_COMMENT@

Reply

Na jakich urządzeniach mogę czytać ebooki?

Ikona ebooka Na czytnikach Kindle, PocketBook, Kobo i innych
Ikona komutera Na komputerach stacjonarnych i laptopach
Ikona telefonu Na telefonach z systemem ANDROID lub iOS
Ikona urządzenia elektroniczne Na wszystkich urządzeniach obsługujących format plików PDF, Mobi, EPub
  • -11%
-11% 94,00 zł
83,69 zł
Najniższa cena z 30 dni: 83,69 zł